InterFrost Project Phase 2: Updated experiment design for validation of Cryohydrogeological codes (Frozen Inclusion)

22nd EGU General Assembly, held online 4-8 May, 2020 International audience Recent field and modelling studies indicate that a fully-coupled, multi-dimensional, thermo-hydraulic (TH) approach is required to accurately model the evolution of permafrost-impacted landscapes and groundwater systems. How...

Full description

Bibliographic Details
Main Authors: Grenier, Christophe, Costard, F., Anbergen, Hauke, Bense, Victor, F., Chanzy, Quentin, Coon, Ethan, Collier, Nathaniel, Ferry, Michel, Frampton, Andrew, Frederick, Jennifer, Goncalves, Julio, Holmén, Johann, Jost, Anne, Kokh, Samuel, Kurylyk, Barret, Mckenzie, Jeffrey, Molson, John, Mouche, Emmanuel, Orgogozo, Laurent, Pannetier, Romain, Pohl, Eric, Rivière, Agnès, Rühaak, Wolfram, Scheidegger, Johanna, Selroos, Jan-Olof, Therrien, Rene, Vidstrand, Patrik, Voss, Clifford, I
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Géosciences Paris Saclay (GEOPS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), APS Antriebs-, Prüf- und Steuertechnik GmbH, School of Environmental Sciences Norwich, University of East Anglia Norwich (UEA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Los Alamos National Laboratory (LANL), Climate Change Science Institute Oak Ridge (CCSI), Oak Ridge National Laboratory Oak Ridge (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Laboratoire de physique et mécanique des matériaux (LPMM), Université Paul Verlaine - Metz (UPVM)-Institut National Polytechnique de Lorraine (INPL)-Ecole Nationale d'Ingénieurs de Metz (ENIM), Université de Lorraine (UL)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Physical Geography and Quaternary Geology, Stockholm University, Division of Hydrologic Sciences, Desert Research Institute (DRI), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Golder Associates Kapellgränd 7, 11625 Stockholm, Sweden, Structure et fonctionnement des systèmes hydriques continentaux (SISYPHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre dor Water Resources Studies Halifax (CWRS), Dalhousie University Halifax, Department of Earth and Planetary Sciences Montréal (EPS), McGill University = Université McGill Montréal, Canada, Université Laval Québec (ULaval), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Technocentre Renault Guyancourt, RENAULT, Université Paris sciences et lettres (PSL), Mines Paris - PSL (École nationale supérieure des mines de Paris), Centre de Géosciences (GEOSCIENCES), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), British Geological Survey (BGS), Swedish Nuclear Fuel and Waste Management Company
Format: Conference Object
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-02404339
https://doi.org/10.5194/egusphere-egu2020-4865
Description
Summary:22nd EGU General Assembly, held online 4-8 May, 2020 International audience Recent field and modelling studies indicate that a fully-coupled, multi-dimensional, thermo-hydraulic (TH) approach is required to accurately model the evolution of permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require validation. This issue was first addressed within the InterFrost IPA Action Group, by means of an intercomparison of thirteen numerical codes for two-dimensional TH test cases (TH2 & TH3). The main results (cf. Grenier et al. 2018 and wiki.lsce.ipsl.fr/interfrost) demonstrate that these codes provide robust results for the test cases considered. The second phase of the InterFrost project is devoted to the simulation of a cold-room reference experiment based on test case TH2 (Frozen Inclusion). In a first implementation phase of the experimental setup, the initial frozen inclusion was inserted in the setup prior to the complete filling of the porous medium and the flow initiation. The thermal evolution of the system was monitored by thermistors located at the center of the initial inclusion and along the downgradient centerline. This setup provided optimal conditions to control the initial experiment geometries but resulted in slight differences in the initialization time for different experiments. We present a second implementation strategy that considers "in place" generation of an initial frozen inclusion through a cooling coil. The initial frozen inclusion is obtained after the initial cooling time and its initial thermal state is measured by means of an array of thermistors. In a second step, the flow is initiated, and the thermal evolution is monitored through an array of 11 thermistors (within the initial position and downgradient). The experimental setup and monitoring results as well as preliminary simulation results are presented. Derived results and conclusions from this exercise ...