Comments on “The Gulf Stream Convergence Zone in the Time-Mean Winds”

International audience In a recent study, O’Neill et al. analyzed the divergence of surface winds above the northwest Atlantic. In the time mean, a band of convergence is found, overlying the southern flank of the Gulf Stream. To quantify the impact of synoptic storms, the authors proposed to compar...

Full description

Bibliographic Details
Published in:Journal of the Atmospheric Sciences
Main Authors: Plougonven, Riwal, Foussard, Alexis, Lapeyre, Guillaume
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.science/hal-02050255
https://hal.science/hal-02050255/document
https://hal.science/hal-02050255/file/gscz_comment_v03a.pdf
https://doi.org/10.1175/JAS-D-17-0369.1
Description
Summary:International audience In a recent study, O’Neill et al. analyzed the divergence of surface winds above the northwest Atlantic. In the time mean, a band of convergence is found, overlying the southern flank of the Gulf Stream. To quantify the impact of synoptic storms, the authors proposed to compare the time-mean divergence with the divergence averaged in the absence of rain. In the resulting conditional-average field, divergence was found to be positive nearly everywhere. O'Neill et al. concluded that this absence of convergence precludes the Ekman-balanced mass adjustment to be responsible for the atmospheric response above the Gulf Stream. Using a simplistic toy model as well as a numerical simulation representative of a storm track, we show that the absence of negative divergence values purely results from the correlation between rain and convergence: the conditional average based on the absence of rain necessarily implies a shift toward positive divergence values. In consequence, we argue that conditional statistics (based on the absence of rain or removing extreme values in the divergence field), as produced by O’Neill et al., do not allow conclusions on the mechanisms underlying the atmospheric response to the Gulf Stream. They nevertheless highlight the essential role of synoptic storms in shaping the divergence field in instantaneous fields.