Currently used pesticides and their mixtures : what are the risks to non-target aquatic organisms? Laboratory and in situ approaches.

Pesticides have enabled humankind to protect its crops from pests, intensifying thus the crop yields to sustain the growing population. However, pesticides often end up in aquatic water bodies, e.g. via field runoff, where they may harm non-target organisms. The environmental concentrations of pesti...

Full description

Bibliographic Details
Main Author: Rozmankova, Eliška
Other Authors: Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Masarykova univerzita (Brno, République tchèque), Patrice Gonzalez, Luděk Bláha
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://theses.hal.science/tel-03235876
https://theses.hal.science/tel-03235876/document
https://theses.hal.science/tel-03235876/file/ROZMANKOVA_ELISKA_2020.pdf
Description
Summary:Pesticides have enabled humankind to protect its crops from pests, intensifying thus the crop yields to sustain the growing population. However, pesticides often end up in aquatic water bodies, e.g. via field runoff, where they may harm non-target organisms. The environmental concentrations of pesticides are often considered safe for aquatic ecosystems although they might induce sublethal changes in exposed organisms. Moreover, the organisms are generally not dealing with only one pesticide issued from a nearby field but with a complex mixture of various chemical compounds, interacting amongst themselves, and creating a toxic cocktail with unknown and hardly predictable impacts. These compounds, each with different environmental fate, eventually degrade and form more or less toxic and persistent metabolites aggravating the complexity of the mixtures.This dissertation thesis summarizes the state-of-the-art in pesticide mixture toxicity research and is composed of five research articles dealing with sublethal effects of selected pesticides on non-target aquatic species. Vulnerable embryo-larval stages of two model organisms: freshwater zebrafish (Danio rerio) and euryhaline bivalve Pacific oyster (Magallana gigas) were used to assess the sublethal toxicity of especially environmental concentrations (detected in selected European water bodies) of commonly used herbicide S metolachlor with its two metabolites metolachlor oxanilic acid and metolachlor ethanesulfonic acid, insecticide imidacloprid, and fungicide propiconazole, alone and in a mixture. A complementary in situ approach was carried out to evaluate a real impact on early-life stages of the Pacific oyster in Arcachon Bay in France, a final recipient of various substances including pesticides from respective watersheds.First, zebrafish embryo-larval stages were observed to be highly sensitive to environmentally relevant concentrations of propiconazole and to a lesser extent also to imidacloprid. In contrast, S-metolachlor and its metabolites had almost no ...