Role of suspended particulate material on growth and metal bioaccumulation in oysters (Crassostrea gigas) from a French coastal semi-enclosed production area, Arcachon Bay

International audience Arcachon Bay is a prominent oyster production area on the coast of Western Europe, and is subject to chemical contamination including by trace metals. Recently, the national "mussel-watch" monitoring network - using local bivalves as semi-quantitative bioindicators o...

Full description

Bibliographic Details
Published in:Journal of Marine Systems
Main Authors: Chouvelon, Tiphaine, Auby, Isabelle, Mornet, Line, Bruzac, Sandrine, Charlier, Karine, Araújo, Daniel Ferreira, Gonzalez, Jean-Louis, Gonzalez, Patrice, Gourves, Pierre-Yves, Méteigner, Claire, Perrière-Rumèbe, Myriam, Rigouin, Loïc, Rozuel, Emmanuelle, Savoye, Nicolas, Sireau, Teddy, Akcha, Farida
Other Authors: Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://insu.hal.science/insu-03779042
https://doi.org/10.1016/j.jmarsys.2022.103778
Description
Summary:International audience Arcachon Bay is a prominent oyster production area on the coast of Western Europe, and is subject to chemical contamination including by trace metals. Recently, the national "mussel-watch" monitoring network - using local bivalves as semi-quantitative bioindicators of coastal chemical contamination - highlighted a significant increase in copper (Cu) concentrations in oysters from this bay. Here, we conducted a one-year multi-compartment and multi-parameter field study to investigate some aspects of the surrounding environment of oysters that could explain their metal bioaccumulation. Sediment, seawater (through punctual and passive sampling), particles (suspended particulate material of selected sizes, including trophic resources for oysters) and transplanted oysters were regularly collected at two contrasted sites of the bay (i.e. under continental versus more oceanic influence). These matrices were characterised for their total Cu, zinc (Zn), nickel (Ni), cadmium (Cd) and lead (Pb) concentrations. Several physico-chemical and biological parameters (e.g. salinity, particle loads, oyster growth rate and condition indices, carbon and nitrogen stable isotope compositions, etc.) were also analysed. Overall, sediment, particles and oysters from the outermost site had slightly lower δ 13 C values, confirming the more oceanic influence in this part of the bay. Among organic particles, although dinoflagellates tended to be more abundant at the outermost site while ciliates were more abundant at the innermost site of the bay, the two sites did not differ in mean total microphytoplankton and diatom densities. However, the variations observed for most of the other parameters studied show that oysters located near the continental shore are exposed to higher loads of particles in general, and to higher metal contents in the dissolved phase and "bulk" seawater (dissolved plus particulate phases) during the year. While fluvial inputs and continental/urban run-offs are suspected sources of ...