Meridional transport and deposition of atmospheric 10 Be

10 Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10 Be production divided into stratospheric,...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Heikkilä, U., Beer, J., Feichter, J.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus 2009
Subjects:
Online Access:https://doi.org/10.5194/acp-9-515-2009
Description
Summary:10 Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10 Be production divided into stratospheric, tropospheric tropical, tropospheric subtropical and tropospheric polar sources. A control run with present day 10 Be production rate is compared with a run during a geomagnetic minimum. The present 10 Be production rate is 4–5 times higher at high latitudes than in the tropics whereas during a period of no geomagnetic dipole field it is constant at all latitudes. The 10 Be deposition fluxes, however, show a very similar latitudinal distribution in both the present day and the geomagnetic minimum run indicating that 10 Be is well mixed in the atmosphere before its deposition. This is also confirmed by the fact that the contribution of 10 Be produced in the stratosphere is dominant (55%–70%) and relatively constant at all latitudes. The contribution of stratospheric 10 Be is approximately 70% in Greenland and 60% in Antarctica reflecting the weaker stratosphere-troposphere air exchange in the Southern Hemisphere.