Improving the estimate of the secular variation of Greenland ice mass in the recent decades by incorporating a stochastic process

The irregular interannual variations observed in the Greenland ice sheet (GrIS) mass balance can be interpreted as stochastic. These variations often have large amplitudes, and, if not accounted for correctly in the mass change model parameterization, could have profound impacts on the estimate of t...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Zhang, Bao, Liu, Lin, Yao, Yibin, van Dam, Tonie, Khan, Shfaqat Abbas
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://orbit.dtu.dk/en/publications/6bc1b156-ce80-4e36-a29d-255632f14695
https://doi.org/10.1016/j.epsl.2020.116518
https://backend.orbit.dtu.dk/ws/files/218539550/1_s2.0_S0012821X20304623_main.pdf
Description
Summary:The irregular interannual variations observed in the Greenland ice sheet (GrIS) mass balance can be interpreted as stochastic. These variations often have large amplitudes, and, if not accounted for correctly in the mass change model parameterization, could have profound impacts on the estimate of the secular trend and acceleration. Here we propose a new mass trajectory model that includes both the conventional deterministic components and a stochastic component. This new model simultaneously estimates the secular rate and acceleration, seasonal components, and the stochastic component of mass changes. Simulations show that this new model improves estimates of model parameters, especially accelerations, over the conventional model without stochastic component. Using this new model, we estimate an acceleration of −1.6 ± 1.3 Gt/yr 2 in mass change (minus means mass loss) for 2003-2017 using the Gravity Recovery and Climate Experiment (GRACE) data and an acceleration of −1.1 ± 1.3 Gt/yr 2 using the modeled surface mass balance plus observed ice discharge. The corresponding rates are estimated to be −288.2 ± 12.7 Gt/yr and −274.9 ± 13.0 Gt/yr. The greatest discrepancies between the new and the conventional model parameter determinations are found in the acceleration estimates, −1.6 Gt/yr2 vs. −7.5 Gt/yr 2 from the GRACE data. The estimated accelerations using the new method are apparently smaller than those estimated by other studies in terms of mass loss. Our quantitative analysis elucidates that the acceleration estimate using the conventional method is the lower bound (i.e., −7.5 Gt/yr 2 for 2003–2017) while the acceleration estimated by the new method lies in the middle of the possible ranges. It is also found that these discrepancies between the new and the conventional methods diminish with sufficiently long (>20 yr) observation records.