Response-Based Estimation of Sea State Parameters

Reliable estimation of the on-site sea state parameters is essential to decision support systems for safe navigation of ships. The sea state parameters can be estimated by Bayesian Modelling which uses complex-valued frequency response functions (FRF) to estimate the wave spectrum on the basis of me...

Full description

Bibliographic Details
Main Author: Nielsen, Ulrik Dam
Format: Other Non-Article Part of Journal/Newspaper
Language:English
Published: 2007
Subjects:
Online Access:https://orbit.dtu.dk/en/publications/5478c37b-957a-41b3-90e5-ce48181fb53d
Description
Summary:Reliable estimation of the on-site sea state parameters is essential to decision support systems for safe navigation of ships. The sea state parameters can be estimated by Bayesian Modelling which uses complex-valued frequency response functions (FRF) to estimate the wave spectrum on the basis of measured ship responses. It is therefore interesting to investigate how the filtering aspect, introduced by FRF, affects the final outcome of the estimation procedures. The paper contains a study based on numerical generated time series, and the study shows that filtering has an influence on the estimations, since high frequency components of the wave excitations are not estimated as accurately as lower frequency components. Moreover, the paper investigates how the final outcome of the Bayesian Modelling is influenced by the accuracy of the FRF. Thus, full-scale data is analysed by use of FRF calculated by a 3-D time domain code and by closed-form (analytical) expressions, respectively. Based on comparisons with wave radar measurements and satellite measurements it is seen that the wave estimations based on closedform expressions exhibit a reasonable energy content, but the distribution of energy appears to be incorrect.