Mass balance of the Greenland ice sheet (2003-2008) from ICESat data:The impact of interpolation, sampling and firn density

ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetr...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Sørensen, Louise Sandberg, Simonsen, Sebastian Bjerregaard, Nielsen, Karina, Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, René, Hvidberg, C. S.
Format: Article in Journal/Newspaper
Language:English
Published: 2011
Subjects:
Online Access:https://orbit.dtu.dk/en/publications/13d6018b-b1e5-4139-8cb5-2f68a4e2393a
https://doi.org/10.5194/tc-5-173-2011
https://backend.orbit.dtu.dk/ws/files/6387891/A39ADDE2d01.pdf
http://www.the-cryosphere.net/5/173/2011/tc-5-173-2011.html
Description
Summary:ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance of the Greenland ice sheet. Firn dynamics and surface densities are important factors that contribute to the mass change derived from remote-sensing altimetry. The volume change derived from ICESat data is corrected for changes in firn compaction over the observation period, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by the application of a simple surface density model, in which some of the ice dynamics are accounted for. The firn compaction and density models are driven by the HIRHAM5 regional climate model, forced by the ERA-Interim re-analysis product, at the lateral boundaries. We find annual mass loss estimates of the Greenland ice sheet in the range of 191 +/- 23Gt yr(-1) to 240 +/- 28 Gt yr(-1) for the period October 2003 to March 2008. These results are in good agreement with several other studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques.