Digital Ionospheric Sounding in the Arctic.

New ionogram observation techniques were applied at the Goose Bay Ionospheric Observatory (GBIO) in Newfoundland, Canada, and aboard AFGL's Airborne Ionospheric Observatory (AIO), using the Digisonde 128PS system. A receiving array of four crossed-loop antennas at GBIO enabled incidence angle a...

Full description

Bibliographic Details
Main Authors: Reinisch,B W, Bibl,K
Other Authors: LOWELL UNIV RESEARCH FOUNDATION MA
Format: Text
Language:English
Published: 1981
Subjects:
Online Access:http://www.dtic.mil/docs/citations/ADA104163
http://oai.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA104163
Description
Summary:New ionogram observation techniques were applied at the Goose Bay Ionospheric Observatory (GBIO) in Newfoundland, Canada, and aboard AFGL's Airborne Ionospheric Observatory (AIO), using the Digisonde 128PS system. A receiving array of four crossed-loop antennas at GBIO enabled incidence angle and polarization measurements within the ionogram in addition to the Doppler observations. The Doppler information in the propagation ionograms between the GBIO Digisonde and the moving AIO sounder facilitates the interpreting of different modes of propagation. Software for the AFGL CDC 6600 computer and for a microcomputer was developed for the processing of the digital ionograms. The identification of ordinary and extraordinary echoes in the Goose Bay ionograms greatly simplify the automatic processing of ionograms. Indeed, it became clear that for automatic ionogram trace identification the O and X tagging is a prerequisite. In support of the ESD 414L project an ionogram communicator (ICOM) was added to the GBIO Digisonde providing - via telephone lines - realtime ionogram printouts at the Over-The-Horizon Backscatter Experimental Radar System in Maine. Another Digisonde station was equipped and brought to operation in Keflavik, Iceland, to provide environmental data for the OTH radar operation. (Author)