Influence of recent warming and ice dynamics on glacier surface elevations in the Canadian High Arctic, 1995–2014

Repeat airborne laser altimetry measurements show widespread thinning (surface lowering) of glaciers in Canada's Queen Elizabeth Islands since 1995. Thinning rates averaged for 50 m elevation bins, were more than three times higher during the period 2005/06 to 2012/14 pentad than during the pre...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: COLLEEN A. MORTIMER, MARTIN SHARP, WESLEY VAN WYCHEN
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press 2018
Subjects:
Online Access:https://doi.org/10.1017/jog.2018.37
https://doaj.org/article/ff003fa7b3c84e03a825e449f4dcaf9a
Description
Summary:Repeat airborne laser altimetry measurements show widespread thinning (surface lowering) of glaciers in Canada's Queen Elizabeth Islands since 1995. Thinning rates averaged for 50 m elevation bins, were more than three times higher during the period 2005/06 to 2012/14 pentad than during the previous two pentads. Strongly negative thickness change (dh/dt) anomalies from 2005/06 to 2012/14, relative to the 1995–2012/14 mean, suggest that most of the measured thinning occurred during the most recent 5–6 year period when mean summer land surface temperatures (LSTs) were anomalously high and the mean summer black-sky shortwave broadband albedos (BSA) were anomalously low, relative to the 2000/01–15/16 period, and upper-air (700 hPa) and near surface (2 m) air temperatures were between 0.8°C and 1.5°C higher than 1995–2012 mean. Comparisons of dh/dt with mean summer LST and BSA measurements from the Moderate Resolution Imaging Spectroradiometer and with surface longitudinal strain rates computed from surface velocity fields derived from RADARSAT 1/2 and Landat-7 ETM + data suggest that surface elevation changes were driven mainly by changes in climate. An exception to this occurs along many fast-flowing outlet glaciers where ice dynamics appear also to have played an important role in surface elevation changes.