3D model of Svecofennian Accretionary Orogen and Karelia Craton based on geology, reflection seismics, magnetotellurics and density modelling: Geodynamic speculations

A 3D model of deep crustal structure of the Archaean Karelia Craton and late Palaeoproterozoic Svecofennian Accretionary Orogen including the boundary zone is presented. The model is based on the combination of data from geological mapping and reflection seismic studies, along profiles 1-EU, 4B, FIR...

Full description

Bibliographic Details
Published in:Geoscience Frontiers
Main Authors: Michael V. Mints, Victor N. Glaznev, Olga M. Muravina, Elena Yu Sokolova
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:https://doi.org/10.1016/j.gsf.2019.10.003
https://doaj.org/article/fd61f9daf7944e78991f752d0e7bf230
Description
Summary:A 3D model of deep crustal structure of the Archaean Karelia Craton and late Palaeoproterozoic Svecofennian Accretionary Orogen including the boundary zone is presented. The model is based on the combination of data from geological mapping and reflection seismic studies, along profiles 1-EU, 4B, FIRE-1-2a-2 and FIRE-3-3a, and uses results of magnetotelluric soundings in southern Finland and northern Karelia. A seismogeological model of the crust and crust–mantle boundary is compared with a model of subhorizontal velocity-density layering of the crust. The TTG-type crust of the Palaeoarchaean and Mesoarchaean microcontinents within the Karelia Craton and the Belomorian Province are separated by gently dipping greenstone belts, at least some of which are palaeosutures. The structure of the crust was determined mainly by Palaeoproterozoic tectonism in the intra-continental settings modified by a strong collisional compression at the end of the Palaeoproterozoic. New insights into structure, origin and evolution of the Svecofennian Orogen are provided. The accretionary complex is characterized by inclined tectonic layering: the tectonic sheets, ~15 km thick, are composed of volcanic-sedimentary rocks, including electro-conductive graphite-bearing sedimentary rocks, and electro-resistive granitoids, which plunge monotonously and consecutively eastward. Upon reaching the level of the lower crust, the tectonic sheets of the accretionary complex lose their distinct outlines. In the seismic reflection pattern they are replaced by a uniform acoustically translucent medium, where separate sheets can only be traced fragmentarily. The crust–mantle boundary bears a diffuse character: the transition from crust to mantle is recorded by the disappearance of the vaguely drawn boundaries of the tectonic sheets and in the gradual transition of acoustically homogeneous and translucent lower crust into transparent mantle. Under the effect of endogenic heat flow, the accretionary complex underwent high-temperature metamorphism and ...