Cytolytic and systemic toxic effects induced by the aqueous extract of the fire coral Millepora alcicornis collected in the Mexican Caribbean and detection of two types of cytolisins

AbstractBackground Millepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea. Like other members of this genus, this species is capable of inducing skin eruptions and blisters with severe pain after contact. In the present study, we investigated the toxicity of theM. alcicor...

Full description

Bibliographic Details
Published in:Journal of Venomous Animals and Toxins including Tropical Diseases
Main Authors: Rosalina Hernández-Matehuala, Alejandra Rojas-Molina, Alma Angelica Vuelvas-Solórzano, Alejandro Garcia-Arredondo, Cesar Ibarra Alvarado, Norma Olguín-López, Manuel Aguilar
Format: Article in Journal/Newspaper
Language:English
Published: SciELO 2015
Subjects:
Online Access:https://doi.org/10.1186/s40409-015-0035-6
https://doaj.org/article/fd34cfaaf8eb4745a132ac42410af81d
Description
Summary:AbstractBackground Millepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea. Like other members of this genus, this species is capable of inducing skin eruptions and blisters with severe pain after contact. In the present study, we investigated the toxicity of theM. alcicornis aqueous extract on several animal models. Considering that some cnidarian hemolysins have been associated to local tissue damage, since they also induce lysis of other cell types, we also made a partial characterization of the hemolytic activity of M. alcicornis aqueous extract. This information is important for understanding the defense mechanisms of the “fire corals”.Methods The effects of pH, temperature, and some divalent cations on the hemolytic activity of the extract were assayed, followed by a zymogram analysis to detect the cytolysins and determine their approximate molecular weight. The toxicity of the aqueous extract was assayed in mice, by intravenous administration, and histopathological changes on several tissues were analyzed by light microscopy. The toxicity of the extract was also tested inArtemia salina nauplii, and the damages caused on the crustaceans were analyzed by transmission and scanning electron microscopy.Results The hemolytic activity of the hydrocoral extract was enhanced in the presence of Ca 2+ (≥2 mM), Mg 2+ (≥6 mM), and Ba2+ (≥0.1 mM); however, it was reduced in the presence of Cu2+(≥0.1 mM), Zn 2+ (≥6 mM), and EDTA (≥0.34 mM). Differences in the pH did not affect the hemolytic activity, but it was temperature-sensitive, since preincubation at ≥ 50 °C sharply reduced hemolysis. The zymogram showed the presence of two types of hemolysins: ~ 28–30 kDa proteins with phospholipase A 2 activity and ~ 200 kDa proteins that do not elicit enzymatic activity. The aqueous extract of this cnidarian was lethal to mice (LD 50 = 17 μg protein/g), and induced kidney, liver, and lung damages. Under denaturing conditions, the aqueous extract completely lost its toxic and hemolytic ...