Insights on Polar Day Antarctica Radio Propagation Using Amateur Radio Beacons on Circumnavigating Balloons

We deployed six pico balloons with 20 m transmitters (14.09 MHz) from Neumayer Station III in the 2022 Antarctic summer. Our objective was to evaluate ionospheric propagation in lower latitudes. Leveraging the Weak Signal Propagation Reporter (WSPR) protocol, we transmitted and received telemetry da...

Full description

Bibliographic Details
Published in:Atmosphere
Main Authors: Todd McKinney, Nick Perlaky, Mike Newchurch, Bill Brown
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2023
Subjects:
Online Access:https://doi.org/10.3390/atmos14071118
https://doaj.org/article/f98b8d99b0684c059bd6f2b4d14dedc3
Description
Summary:We deployed six pico balloons with 20 m transmitters (14.09 MHz) from Neumayer Station III in the 2022 Antarctic summer. Our objective was to evaluate ionospheric propagation in lower latitudes. Leveraging the Weak Signal Propagation Reporter (WSPR) protocol, we transmitted and received telemetry data on a global scale. Each balloon remained airborne for over a month, with one completing eight circumnavigations of the southern hemisphere, transmitting WSPR beacon data for 98 days. Our analysis focused on signal propagation characteristics in the polar ionosphere and surrounding regions, considering factors such as location relative to the WSPR network and solar elevation angles. Alignment between solar elevation angles at transmitting and receiving stations indicated a relationship with signal reception; lower solar elevation angles proved crucial for long-range propagation. We discovered that, beyond a solar angle of 60 degrees above the horizon, no decodes were recorded beyond 7500 km. Most signal spots were observed within a 1000–5000 km range and solar elevation angles ranging from 1 to 80 degrees. Over Antarctica, spot occurrences peaked around 4 UTC, particularly during the early hours of the day. Our findings demonstrate the usefulness of pico balloons for propagation studies, providing insights into the WSPR network’s coverage over Antarctica and surrounding lower latitudes.