Adding value to extended-range forecasts in northern Europe by statistical post-processing using stratospheric observations

The strength of the stratospheric polar vortex influences the surface weather in the Northern Hemisphere in winter; a weaker (stronger) than average stratospheric polar vortex is connected to negative (positive) Arctic Oscillation (AO) and colder (warmer) than average surface temperatures in norther...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: N. Korhonen, O. Hyvärinen, M. Kämäräinen, D. S. Richardson, H. Järvinen, H. Gregow
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Online Access:https://doi.org/10.5194/acp-20-8441-2020
https://doaj.org/article/f8a583301ab44f718a823843b58d067a
Description
Summary:The strength of the stratospheric polar vortex influences the surface weather in the Northern Hemisphere in winter; a weaker (stronger) than average stratospheric polar vortex is connected to negative (positive) Arctic Oscillation (AO) and colder (warmer) than average surface temperatures in northern Europe within weeks or months. This holds the potential for forecasting in that timescale. We investigate here if the strength of the stratospheric polar vortex at the start of the forecast could be used to improve the extended-range temperature forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) and to find periods with higher prediction skill scores. For this, we developed a stratospheric wind indicator (SWI) based on the strength of the stratospheric polar vortex and the phase of the AO during the following weeks. We demonstrate that there was a statistically significant difference in the observed surface temperature in northern Europe within the 3–6 weeks, depending on the SWI at the start of the forecast. When our new SWI was applied in post-processing the ECMWF's 2-week mean temperature reforecasts for weeks 3–4 and 5–6 in northern Europe during boreal winter, the skill scores of those weeks were slightly improved. This indicates there is some room for improving the extended-range forecasts, if the stratosphere–troposphere links were better captured in the modelling. In addition to this, we found that during the boreal winter, in cases where the polar vortex was weak at the start of the forecast, the mean skill scores of the 3–6 weeks' surface temperature forecasts were higher than average.