The origin of glacial alpine landscape in Tröllaskagi Peninsula (North Iceland)

The Tröllaskagi peninsula is located in north central Iceland, between meridians 19º30’W and 18º10’W , limited by Skagafjödur fiord to the west and the Eyjafjödur fiord to the east, jutting out into the North Atlantic to latitude 66º12’N and linked to the central Icelandic highlands to the south. Th...

Full description

Bibliographic Details
Published in:Cuadernos de Investigación Geográfica
Main Authors: N. Andrés, L. M. Tanarro, J. M. Fernández, D. Palacios
Format: Article in Journal/Newspaper
Language:English
Spanish
Published: Universidad de La Rioja 2016
Subjects:
Online Access:https://doi.org/10.18172/cig.2935
https://doaj.org/article/f75210bcd8c8478aa004177262011c58
Description
Summary:The Tröllaskagi peninsula is located in north central Iceland, between meridians 19º30’W and 18º10’W , limited by Skagafjödur fiord to the west and the Eyjafjödur fiord to the east, jutting out into the North Atlantic to latitude 66º12’N and linked to the central Icelandic highlands to the south. The peninsula is a Tertiary basalt plateau topped by flat summits with altitudes of 1000-1500 m, intensely dissected by the drainage network. The aim of this present study is to synthesize the recent advances in our understanding of the landscape and its dynamics in the Tröllaskagi peninsula and find the origin of its significant difference from the rest of Iceland. Results of the most recent research suggest the situation of Tröllaskagi as ice-free, delimited by the two great glacial outlets flowing down from the Icelandic Ice Sheet through the Skagafjödur and Eyjafjödur fiords, from at least the Oldest Dryas to the end of the Early Preboreal. Inland in Tröllaskagi, the glaciers formed in the north-facing cirques without losing their alpine characteristics during the Late Pleistocene and Holocene. The advances of these glaciers during the Oldest, Older and Youngest Dryas and the Early Preboreal were only a few hundred metres greater than the most important advance in the second half of the Holocene, during the Little Ice Age. Only a few of these glaciers remained debris-free and are sensitive to the minor climate oscillations. The rest, due to the important geomorphological activity on their walls, developed into debris-covered and rock glaciers and lost this significant dynamism.