Low Energy Subsurface Environments as Extraterrestrial Analogs

Earth’s subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well...

Full description

Bibliographic Details
Published in:Frontiers in Microbiology
Main Authors: Rose M. Jones, Jacqueline M. Goordial, Beth N. Orcutt
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2018
Subjects:
Online Access:https://doi.org/10.3389/fmicb.2018.01605
https://doaj.org/article/f71bc0ee4d1c4d6fa6ff4c900a928f2d
Description
Summary:Earth’s subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth’s low energy subsurface habitats.