Ocean warming drives rapid dynamic activation of marine-terminating glacier on the west Antarctic Peninsula

Abstract Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and c...

Full description

Bibliographic Details
Published in:Anais da Academia Brasileira de Ciências
Main Authors: Benjamin J. Wallis, Anna E. Hogg, Michael P. Meredith, Romilly Close, Dominic Hardy, Malcolm McMillan, Jan Wuite, Thomas Nagler, Carlos Moffat
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2023
Subjects:
Q
Online Access:https://doi.org/10.1038/s41467-023-42970-4
https://doaj.org/article/f593329b706f40f1be5befacc59815ef
Description
Summary:Abstract Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability.