The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (R...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: N. A. N. Bertler, H. Conway, D. Dahl-Jensen, D. B. Emanuelsson, M. Winstrup, P. T. Vallelonga, J. E. Lee, E. J. Brook, J. P. Severinghaus, T. J. Fudge, E. D. Keller, W. T. Baisden, R. C. A. Hindmarsh, P. D. Neff, T. Blunier, R. Edwards, P. A. Mayewski, S. Kipfstuhl, C. Buizert, S. Canessa, R. Dadic, H. A. Kjær, A. Kurbatov, D. Zhang, E. D. Waddington, G. Baccolo, T. Beers, H. J. Brightley, L. Carter, D. Clemens-Sewall, V. G. Ciobanu, B. Delmonte, L. Eling, A. Ellis, S. Ganesh, N. R. Golledge, S. Haines, M. Handley, R. L. Hawley
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2018
Subjects:
Online Access:https://doi.org/10.5194/cp-14-193-2018
https://doaj.org/article/f56c78664267465ebbeca6de5a2e1229
Description
Summary:High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.