Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements

A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothe...

Full description

Bibliographic Details
Published in:Annales Geophysicae
Main Authors: H. Iimura, D. C. Fritts, D. Janches, W. Singer, N. J. Mitchell
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Q
Online Access:https://doi.org/10.5194/angeo-33-1349-2015
https://doaj.org/article/f55bad161e73423ca405319598a8a262
Description
Summary:A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothera Station, Antarctica (68° S) in the Southern Hemisphere. The analysis was performed using data collected during simultaneous measurements by the four radars from June 2010 to December 2012 at altitudes from 84 to 96 km. The 5DW was found to exhibit significant short-term, seasonal, and interannual variability at all sites. Typical events had planetary wave periods that ranged between 4 and 7 days, durations of only a few cycles, and infrequent strongly peaked variances and covariances. Winds exhibited rotary structures that varied strongly among sites and between events, and maximum amplitudes up to ~ 20 m s −1 . Mean horizontal velocity covariances tended to be largely negative at all sites throughout the interval studied.