Upland Yedoma taliks are an unpredicted source of atmospheric methane

Abstract Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and l...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: K. M. Walter Anthony, P. Anthony, N. Hasson, C. Edgar, O. Sivan, E. Eliani-Russak, O. Bergman, B. J. Minsley, S. R. James, N. J. Pastick, A. Kholodov, S. Zimov, E. Euskirchen, M. S. Bret-Harte, G. Grosse, M. Langer, J. Nitzbon
Format: Article in Journal/Newspaper
Language:English
Published: Nature Portfolio 2024
Subjects:
Q
Ice
Online Access:https://doi.org/10.1038/s41467-024-50346-5
https://doaj.org/article/f501b4f1d2a14e6f874eaf0f9be810cb
Description
Summary:Abstract Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and laboratory observations indicate that talik (perennially thawed soils in permafrost) development in unsaturated Yedoma uplands leads to unexpectedly large methane emissions (35–78 mg m−2 d−1 summer, 150–180 mg m−2 d−1 winter). Upland Yedoma talik emissions were nearly three times higher annually than northern-wetland emissions on an areal basis. Approximately 70% emissions occurred in winter, when surface-soil freezing abated methanotrophy, enhancing methane escape from the talik. Remote sensing and numerical modeling indicate the potential for widespread upland talik formation across the pan-arctic Yedoma domain during the 21st and 22nd centuries. Contrary to current climate model predictions, these findings imply a positive and much larger permafrost-methane-climate feedback for upland Yedoma.