Development of a reverse genetics system for Sosuga virus allows rapid screening of antiviral compounds.

Sosuga virus (SOSV) is a recently discovered zoonotic paramyxovirus isolated from a single human case in 2012; it has been ecologically and epidemiologically associated with transmission by the Egyptian rousette bat (Rousettus aegyptiacus). Bats have long been recognized as sources of novel zoonotic...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Stephen R Welch, Ayan K Chakrabarti, Lisa Wiggleton Guerrero, Harley M Jenks, Michael K Lo, Stuart T Nichol, Christina F Spiropoulou, César G Albariño
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2018
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0006326
https://doaj.org/article/f279a4a5fd25457c9b4969a2f308e8e0
Description
Summary:Sosuga virus (SOSV) is a recently discovered zoonotic paramyxovirus isolated from a single human case in 2012; it has been ecologically and epidemiologically associated with transmission by the Egyptian rousette bat (Rousettus aegyptiacus). Bats have long been recognized as sources of novel zoonotic pathogens, including highly lethal paramyxoviruses like Nipah virus (NiV) and Hendra virus (HeV). The ability of SOSV to cause severe human disease supports the need for studies on SOSV pathogenesis to better understand the potential impact of this virus and to identify effective treatments. Here we describe a reverse genetics system for SOSV comprising a minigenome-based assay and a replication-competent infectious recombinant reporter SOSV that expresses the fluorescent protein ZsGreen1 in infected cells. First, we used the minigenome assay to rapidly screen for compounds inhibiting SOSV replication at biosafety level 2 (BSL-2). The antiviral activity of candidate compounds was then tested against authentic viral replication using the reporter SOSV at BSL-3. We identified several compounds with anti-SOSV activity, several of which also inhibit NiV and HeV. Alongside its utility in screening for potential SOSV therapeutics, the reverse genetics system described here is a powerful tool for analyzing mechanisms of SOSV pathogenesis, which will facilitate our understanding of how to combat the potential public health threats posed by emerging bat-borne paramyxoviruses.