Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways

In order to assess future sea level rise and its societal impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present sea level rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Alexander Nauels, Joeri Rogelj, Carl-Friedrich Schleussner, Malte Meinshausen, Matthias Mengel
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing 2017
Subjects:
Q
Online Access:https://doi.org/10.1088/1748-9326/aa92b6
https://doaj.org/article/ec86874846924b3d80adf7aeddf35938
Description
Summary:In order to assess future sea level rise and its societal impacts, we need to study climate change pathways combined with different scenarios of socioeconomic development. Here, we present sea level rise (SLR) projections for the Shared Socioeconomic Pathway (SSP) storylines and different year-2100 radiative forcing targets (FTs). Future SLR is estimated with a comprehensive SLR emulator that accounts for Antarctic rapid discharge from hydrofracturing and ice cliff instability. Across all baseline scenario realizations (no dedicated climate mitigation), we find 2100 median SLR relative to 1986–2005 of 89 cm (likely range: 57–130 cm) for SSP1, 105 cm (73–150 cm) for SSP2, 105 cm (75–147 cm) for SSP3, 93 cm (63–133 cm) for SSP4, and 132 cm (95–189 cm) for SSP5. The 2100 sea level responses for combined SSP-FT scenarios are dominated by the mitigation targets and yield median estimates of 52 cm (34–75 cm) for FT 2.6 Wm ^−2 , 62 cm (40–96 cm) for FT 3.4 Wm ^−2 , 75 cm (47–113 cm) for FT 4.5 Wm ^−2 , and 91 cm (61–132 cm) for FT 6.0 Wm ^−2 . Average 2081–2100 annual SLR rates are 5 mm yr ^−1 and 19 mm yr ^−1 for FT 2.6 Wm ^−2 and the baseline scenarios, respectively. Our model setup allows linking scenario-specific emission and socioeconomic indicators to projected SLR. We find that 2100 median SSP SLR projections could be limited to around 50 cm if 2050 cumulative CO _2 emissions since pre-industrial stay below 850 GtC, with a global coal phase-out nearly completed by that time. For SSP mitigation scenarios, a 2050 carbon price of 100 US$2005 tCO _2 ^−1 would correspond to a median 2100 SLR of around 65 cm. Our results confirm that rapid and early emission reductions are essential for limiting 2100 SLR.