Sourcing the iron in the naturally fertilised bloom around the Kerguelen Plateau: particulate trace metal dynamics

The KEOPS2 project aims to elucidate the role of natural Fe fertilisation on biogeochemical cycles and ecosystem functioning, including quantifying the sources and processes by which iron is delivered in the vicinity of the Kerguelen Archipelago, Southern Ocean. The KEOPS2 process study used an upst...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: P. van der Merwe, A. R. Bowie, F. Quéroué, L. Armand, S. Blain, F. Chever, D. Davies, F. Dehairs, F. Planchon, G. Sarthou, A. T. Townsend, T. W. Trull
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Online Access:https://doi.org/10.5194/bg-12-739-2015
https://doaj.org/article/ebdfc56767fe4a8b86ce2a8e20af5500
Description
Summary:The KEOPS2 project aims to elucidate the role of natural Fe fertilisation on biogeochemical cycles and ecosystem functioning, including quantifying the sources and processes by which iron is delivered in the vicinity of the Kerguelen Archipelago, Southern Ocean. The KEOPS2 process study used an upstream high-nutrient, low-chlorophyll (HNLC), deep water (2500 m), reference station to compare with a shallow (500 m), strongly fertilised plateau station and continued the observations to a downstream, bathymetrically trapped recirculation of the Polar Front where eddies commonly form and persist for hundreds of kilometres into the Southern Ocean. Over the Kerguelen Plateau, mean particulate (1–53 μm) Fe and Al concentrations (pFe = 13.4 nM, pAl = 25.2 nM) were more than 20-fold higher than at an offshore (lower-productivity) reference station (pFe = 0.53 nM, pAl = 0.83 nM). In comparison, over the plateau dissolved Fe levels were only elevated by a factor of ~ 2. Over the Kerguelen Plateau, ratios of pMn / pAl and pFe / pAl resemble basalt, likely originating from glacial/fluvial inputs into shallow coastal waters. In downstream, offshore deep-waters, higher pFe / pAl, and pMn / pAl ratios were observed, suggesting loss of lithogenic material accompanied by retention of pFe and pMn. Biological uptake of dissolved Fe and Mn and conversion into the biogenic particulate fraction or aggregation of particulate metals onto bioaggregates also increased these ratios further in surface waters as the bloom developed within the recirculation structure. While resuspension of shelf sediments is likely to be one of the important mechanisms of Fe fertilisation over the plateau, fluvial and glacial sources appear to be important to areas downstream of the island. Vertical profiles within an offshore recirculation feature associated with the Polar Front show pFe and pMn levels that were 6-fold and 3.5-fold lower, respectively, than over the plateau in surface waters, though still 3.6-fold and 1.7-fold higher respectively than the ...