Rise in Northeast US extreme precipitation caused by Atlantic variability and climate change

Extreme precipitation (EP) in the Northeastern United States increased abruptly after 1996, coinciding with warming Atlantic sea surface temperatures (SSTs). We examine the importance of internal variability and external forcings (including anthropogenic and natural forcings) to these EP and SST inc...

Full description

Bibliographic Details
Published in:Weather and Climate Extremes
Main Authors: Huanping Huang, Christina M. Patricola, Jonathan M. Winter, Erich C. Osterberg, Justin S. Mankin
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2021
Subjects:
Online Access:https://doi.org/10.1016/j.wace.2021.100351
https://doaj.org/article/ea3fe2cd2e4742d7ad8fe5473d0b7012
Description
Summary:Extreme precipitation (EP) in the Northeastern United States increased abruptly after 1996, coinciding with warming Atlantic sea surface temperatures (SSTs). We examine the importance of internal variability and external forcings (including anthropogenic and natural forcings) to these EP and SST increases by using the Community Earth System Model large ensembles and an optimal fingerprint method to isolate the effects of different forcings on 1929–2018 Northeast EP and North Atlantic SSTs. We find that external forcings have significantly influenced both Northeast EP and North Atlantic SSTs, with a time of detection in 2008 and 1968, respectively. Beyond SST changes attributable to internal variability of the Atlantic, anthropogenic aerosols and greenhouse gases are important drivers of SST changes, first detected in 1968 and 1983, respectively. Greenhouse gases are the only anthropogenic forcing exerting substantial influence on EP, first detected in 2008. We therefore attribute the 1996 EP shift to both unforced Atlantic variability and anthropogenic forcings.