Anti-malarial activity of geldanamycin derivatives in mice infected with Plasmodium yoelii

Abstract Background Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite growth arrest has been shown to be due to drug-induced blockage...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: Mout Rubul, Xu Zhi-Dong, Wolf Angela K H, Jo Davisson Vincent, Jarori Gotam K
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2012
Subjects:
Online Access:https://doi.org/10.1186/1475-2875-11-54
https://doaj.org/article/e87c3972fc914032becc2a3a214e1940
Description
Summary:Abstract Background Geldanamycin (GA), a benzoquinone ansamycin antibiotic has been shown in vitro to possess anti-plasmodial activity. Pharmacological activity of this drug is attributed to its ability to inhibit PfHSP90. The parasite growth arrest has been shown to be due to drug-induced blockage of the transition from ring to trophozoite stage. To further evaluate the consequences of this pharmacodyamic feature, the anti-malarial activity of GA analogs with enhanced drug properties in a Plasmodium -infected animal model have been evaluated for their capacity to induce clearance of the parasite. In the process, a hypothesis was subsequently tested regarding the susceptibility of the cured animals to malaria reflected in an attenuated parasite load that may be evoked by a protective immune response in the host. Methods Six weeks old Swiss mice were infected with a lethal Plasmodium yoelii (17XL) strain. On appearance of clinical symptoms of malaria, these animals were treated with two different GA derivatives and the parasite load was monitored over 15-16 days. Drug-treated animals cured of the parasite were then re-challenged with a lethal dose of P. yoelii 17XL. Serum samples from GA cured mice that were re-challenged with P. yoelii 17XL were examined for the presence of antibodies against the parasite proteins using western blot analysis. Results Treatment of P. yoelii 17XL infected mice with GA derivatives showed slow recovery from clinical symptoms of the disease. Blood smears from drug treated mice indicated a dominance of ring stage parasites when compared to controls. Although, P. yoelii preferentially invades normocytes (mature rbcs), in drug-treated animals there was an increased invasion of reticulocytes. Cured animals exhibited robust protection against subsequent infection and serum samples from these animals showed antibodies against a vast majority of parasite proteins. Conclusions Treatment with GA derivatives blocked the transition from ring to trophozoite stage presumably by the inhibition of ...