A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis.

Background Scabies, a highly contagious skin disease affecting more than 200 million people worldwide at any time, is caused by the parasitic mite Sarcoptes scabiei. In the absence of molecular markers, diagnosis requires experience making surveillance and control challenging. Superficial microthrom...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Deepani D Fernando, Simone L Reynolds, Gunter Hartel, Bernard Cribier, Nicolas Ortonne, Malcolm K Jones, Katja Fischer
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2021
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0008997
https://doaj.org/article/e86b76fb542e45a29e05baf6ba01ba69
Description
Summary:Background Scabies, a highly contagious skin disease affecting more than 200 million people worldwide at any time, is caused by the parasitic mite Sarcoptes scabiei. In the absence of molecular markers, diagnosis requires experience making surveillance and control challenging. Superficial microthrombi in the absence of vasculitis in scabies-affected skin are a recognised, yet unexplained histopathological differential of scabies infection. This study demonstrates that a family of Scabies Mite Inactivated Cysteine Protease Paralogues (SMIPP-Cs) excreted by the mites plays a role in formation of scabies-induced superficial microthrombi. Methodology/principal findings A series of in vitro and ex vivo experiments involving two representative recombinant SMIPP-Cs was carried out. In the presence of SMIPP-Cs, the thrombin clotting time (TCT), fibrin formation and plasmin induced fibrinolysis were monitored in vitro. The ultrastructure of the SMIPP-C-modulated fibrin was analysed by Scanning Electron Microscopy (SEM). Immuno-histological analyses were performed ex vivo, to localise the SMIPP-C proteins within scabies infected skin biopsies. SMIPP-Cs displayed pro-coagulant properties. They bound calcium ions, reduced the thrombin clotting time, enhanced the fibrin formation rate and delayed plasmin-induced fibrinolysis. The SMIPP-Cs associated with fibrin clots during fibrinogen polymerisation and did not bind to preformed fibrin. Scanning electron microscopy revealed that the fibrin clots formed in the presence of SMIPP-Cs were aberrant and denser than normal fibrin clots. SMIPP-Cs were detected in microthrombi which are commonly seen in scabietic skin. Conclusions/significance The SMIPP-Cs are the first scabies mite proteins found in sub-epidermal skin layers and their pro-coagulant properties promote superficial microthrombi formation in scabetic skin. Further research is needed to evaluate their potential as diagnostic or therapeutic target.