Three‐liquid‐phase salting‐out extraction of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)‐rich oils from Euphausia superba

Abstract The TLPSOES parameters were optimized by response surface methodology using Box–Behnken design, which were 16.5% w/w of ammonium citrate, 17.5% w/w of ethanol, and 46% w/w of n‐hexane at 70 min of stirring time. Under optimized conditions the extraction efficiency attained was 90.91 ± 0.97%...

Full description

Bibliographic Details
Published in:Engineering in Life Sciences
Main Authors: Liaqat Zeb, Xin‐Nan Teng, Muhammad Shafiq, Shu‐Chang Wang, Zhi‐Long Xiu, Zhi‐Guo Su
Format: Article in Journal/Newspaper
Language:English
Published: Wiley-VCH 2021
Subjects:
Online Access:https://doi.org/10.1002/elsc.202000098
https://doaj.org/article/e82068b0369443c9abdd0a73925e5fa9
Description
Summary:Abstract The TLPSOES parameters were optimized by response surface methodology using Box–Behnken design, which were 16.5% w/w of ammonium citrate, 17.5% w/w of ethanol, and 46% w/w of n‐hexane at 70 min of stirring time. Under optimized conditions the extraction efficiency attained was 90.91 ± 0.97% of EPA, 90.02 ± 1.04% of DHA, and 91.85 ± 1.11% of KO in the top n‐hexane phase. The highest extraction efficiency of proteins and flavonoids, i.e. 88.34 ± 1.35% and 79.67 ± 1.13%, was recorded in the solid interface and ethanol phase, respectively. The KO extracted by TLPSOES system consisted of lowest fluoride level compared to the conventional method and whole wet krill biomass. The TLPSOES is a potential candidate for nutraceutical industry of KO extraction from wet krill biomass.