Orbital and Millennial Variations in Sea Ice in the Southwestern Okhotsk Sea Since the Last Interglacial Period and Their Implications

Sea ice in the Okhotsk Sea plays a significant role in global climate change. However, the history and mechanism of changes in sea ice spanning the last glacial cycle remain controversial. In this study, an 8.8 m core (LV55-40-1) was recovered from the southwestern Okhotsk Sea that contains a contin...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Anqi Wang, Zhengquan Yao, Xuefa Shi, Kunshan Wang, Jianjun Zou, Yanguang Liu, Yonghua Wu, Sergey A. Gorbarenko
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
Q
Online Access:https://doi.org/10.3389/feart.2021.710797
https://doaj.org/article/e2c36bb101cb4b729edb8b0ff7512dce
Description
Summary:Sea ice in the Okhotsk Sea plays a significant role in global climate change. However, the history and mechanism of changes in sea ice spanning the last glacial cycle remain controversial. In this study, an 8.8 m core (LV55-40-1) was recovered from the southwestern Okhotsk Sea that contains a continuous sea ice record over the past ∼110 kyr. The sand fraction and dropstones were used as ice-rafted debris proxies to reconstruct the history of sea ice variations over the last ∼110 kyr and to determine the underlying causes on orbital and millennial timescales. Sea ice expansions occurred during MIS 5b, MIS 4, mid-MIS 3, and early MIS 1, which were controlled mainly by decreased autumn insolation on an orbital timescale. Superimposed on the orbital-scale changes, millennial-scale variations in sea ice were also observed, with 19 expansion events that coincided with cold Dansgaard-Oeschger stadials. Millennial scale sea ice variations were most likely controlled by both the Arctic oscillation and the East Asian summer monsoon. During periods of negative Arctic oscillation patterns, decreased air temperatures over the Okhotsk Sea caused more active sea ice formation. Such conditions could have been reinforced, by a reduced influence of warm advection at the surface of the Okhotsk Sea caused by decreased discharge from the Amur River that resulted from a weakened East Asian summer monsoon during cold stadials.