Seroprevalence of leptospiral antibodies in rodents from riverside communities of Santa Fe, Argentina.

Background Leptospirosis is a zoonotic disease that can be transmitted by contact with the urine of infected mammals. Rodents play a mayor role in the transmission of leptospires to humans. The province of Santa Fe reports the greatest number of cases in Argentina. Yet, in this region, there are sti...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Tamara Ricardo, Paulina Jacob, Yosena Chiani, María Fernanda Schmeling, Paula Cornejo, Agustina Alejandra Ojeda, Pablo Vicente Teta, Norma Bibiana Vanasco, María Andrea Previtali
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2020
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0008222
https://doaj.org/article/e13efcafc3ee4cb3bec40c54a8c64d32
Description
Summary:Background Leptospirosis is a zoonotic disease that can be transmitted by contact with the urine of infected mammals. Rodents play a mayor role in the transmission of leptospires to humans. The province of Santa Fe reports the greatest number of cases in Argentina. Yet, in this region, there are still knowledge gaps regarding the diversity of rodent species that may be hosts of pathogenic leptospires. The aims of this study were to evaluate the presence of leptospiral antibodies in rodents from three riverside communities of Santa Fe, and to identify factors associated with leptospiral infection. Methodology/principal findings Each community was divided into three environmental settings based on the level of human disturbance, and sampled during two springs (Sep-Oct 2014 and 2015) and one autumn (Mar-Apr 2015). Serum samples of captured sigmodontine and murine rodents were tested for leptospiral antibodies by enzyme-linked immunosorbent assay (ELISA), and microagglutination test (MAT) was used to assess the infecting serovar in seropositive individuals. Factors influencing seropositivity were analyzed using logistic regression models. We caught 119 rodents, of which 101 serums were suitable for analysis. Most frequently trapped species were Scapteromys aquaticus, Akodon azarae and Oligoryzomys spp., with seroprevalences of 41.3%, 42.9% and 55% respectively. Seropositivity was higher in individuals with an average body condition score and in those that were sexually mature, but in the latter the differences were marginally significant. Conclusions/significance Our results suggest that native rodents may be playing a role in the environmental circulation of pathogenic leptospires and provide relevant information for public health policies in the area.