In vitro characterization of Trypanosoma cruzi infection dynamics in skeletal and cardiac myotubes models suggests a potential cell-to-cell transmission in mediating cardiac pathology.

Chagas disease predominantly affects the heart, esophagus, and colon in its chronic phase. However, the precise infection mechanisms of the causal agent Trypanosoma cruzi in these tissue types remain incompletely understood. This study investigated T. cruzi infection dynamics in skeletal (SM) and ca...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: José María Eloy Contreras-Ortiz, Daniel Hernández-Mendoza, Claudia Márquez-Dueñas, Rebeca Manning-Cela, Moisés Santillán
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2024
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0012288
https://doaj.org/article/e0c31f1254e440a6b5871b66596bec69
Description
Summary:Chagas disease predominantly affects the heart, esophagus, and colon in its chronic phase. However, the precise infection mechanisms of the causal agent Trypanosoma cruzi in these tissue types remain incompletely understood. This study investigated T. cruzi infection dynamics in skeletal (SM) and cardiac myotubes (CM) differentiated from H9c2(2-1) myoblasts (control). SM and CM were generated using 1% fetal bovine serum (FBS) without or with retinoic acid, respectively. Initial invasion efficiencies and numbers of released parasites were equivalent between undifferentiated and differentiated cells (~0.3-0.6%). Concomitantly, parasite motility patterns were similar across cell lines. However, CM demonstrated significantly higher infection kinetics over time, reaching 13.26% infected cells versus 3.12% for SM and 3.70% for myoblasts at later stages. Cellular automata modeling suggested an enhanced role for cell-to-cell transmission in driving the heightened parasitism observed in CM. The increased late-stage susceptibility of CM, potentially mediated by cell-to-cell transfer mechanisms of the parasite, aligns with reported clinical tropism patterns. The myotube infection models provide novel insights into Chagas disease pathogenesis that are not fully attainable through in vivo examination alone. Expanding knowledge in this area could aid therapeutic development for this neglected illness.