Uncertain Spatial Pattern of Future Land Use and Land Cover Change and Its Impacts on Terrestrial Carbon Cycle Over the Arctic–Boreal Region of North America

Abstract Land use and land cover change (LULCC) represents a key process of human‐Earth system interaction and has profound impacts on terrestrial ecosystem carbon cycling. As a key input for ecosystem models, future gridded LULCC data is typically spatially downscaled from regional LULCC projection...

Full description

Bibliographic Details
Published in:Earth's Future
Main Authors: Meng Luo, Fa Li, Dalei Hao, Qing Zhu, Hamid Dashti, Min Chen
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2023
Subjects:
Online Access:https://doi.org/10.1029/2023EF003648
https://doaj.org/article/df3b9669b03345fbadf28803822146bc
Description
Summary:Abstract Land use and land cover change (LULCC) represents a key process of human‐Earth system interaction and has profound impacts on terrestrial ecosystem carbon cycling. As a key input for ecosystem models, future gridded LULCC data is typically spatially downscaled from regional LULCC projections by integrated assessment models, such as the Global Change Analysis Model (GCAM). The uncertainty associated with the different spatial downscaling methods and its impacts on the subsequent model projections have been historically ignored and rarely examined. This study investigated this problem using two representative spatial downscaling methods and focused on their impacts on the carbon cycle over the Arctic‐Boreal Vulnerability Experiment (ABoVE) domain, where extensive LULCC is expected. Specifically, we used the Future Land Use Simulation model (FLUS) and the Demeter model to generate 0.25° gridded LULCC data (i.e., LULCCFLUS and LULCCDemeter, respectively) with the same input of regional LULCC projections from GCAM, under both the low (i.e., SSP126) and high (i.e., SSP585) greenhouse gas emission scenarios. The two sets of downscaled LULCC were used to drive the Community Land Model version 5 and prognostically simulate the terrestrial carbon cycle dynamics over the 21st century. The results suggest large spatial‐temporal differences between LULCCFLUS and LULCCDemeter, and the spatial distributions of the needleleaf evergreen boreal tree, broadleaf deciduous boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass are particularly different under both SSP126 and SSP585. Additionally, the spatiotemporal differences are larger under SSP126 than SSP585, due to more intensive LULCC under SSP126 than SSP585 from GCAM projection. The differences in LULCC further lead to large discrepancies in the spatial patterns of projected gross primary productivity, ecosystem respiration, and net ecosystem exchange, which represent more than 79% of the contributions of future LULCC in 2100. Additionally, the ...