Observing System Experiments with an Arctic Mesoscale Numerical Weather Prediction Model

In the Arctic, weather forecasting is one element of risk mitigation, helping operators to have knowledge on weather-related risk in advance through forecasting capabilities at time ranges from a few hours to days ahead. The operational numerical weather prediction is an initial value problem where...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Roger Randriamampianina, Harald Schyberg, Máté Mile
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2019
Subjects:
Q
Online Access:https://doi.org/10.3390/rs11080981
https://doaj.org/article/de8aa516bab24826833c5b9359b18d3a
Description
Summary:In the Arctic, weather forecasting is one element of risk mitigation, helping operators to have knowledge on weather-related risk in advance through forecasting capabilities at time ranges from a few hours to days ahead. The operational numerical weather prediction is an initial value problem where the forecast quality depends both on the quality of the forecast model itself and on the quality of the specified initial state. The initial states are regularly updated using environmental observations through data assimilation. This paper assesses the impact of observations, which are accessible through the global telecommunication and the EUMETCast dissemination systems on analyses and forecasts of an Arctic limited area AROME (Application of Research to Operations at Mesoscale) model (AROME-Arctic). An assessment through the computation of degrees of freedom for signals on the analysis, the utilization of an energy norm-based approach applied to the forecasts, verifications against observations, and a case study showed similar impacts of the studied observations on the AROME-Arctic analysis and forecast systems. The AROME-Arctic assimilation system showed a relatively high sensitivity to the humidity or humidity-sensitive observations. The more radiance data were assimilated, the lower was the estimated relative sensitivity of the assimilation system to different conventional observations. Data assimilation, at least for surface parameters, is needed to produce accurate forecasts from a few hours up to days ahead over the studied Arctic region. Upper-air conventional observations are not enough to improve the forecasting capability over the AROME-Arctic domain compared to those already produced by the ECMWF (European Centre for Medium-range Weather Forecast). Each added radiance data showed a relatively positive impact on the analyses and forecasts of the AROME-Arctic. The humidity-sensitive microwave (AMSU-B/MHS) radiances, assimilated together with the conventional observations and the Infrared Atmospheric ...