Phylogeny of Brucella abortus strains isolated in the Russian Federation

Objective: To study Brucella (B.) abortus strains isolated in the Russian Federation, in order to identify their detailed position in the phylogenetic structure of the species global population as well as to determine genetic relationships for isolates from different geographical areas. Methods: Bas...

Full description

Bibliographic Details
Published in:Asian Pacific Journal of Tropical Medicine
Main Authors: Dmitry A Kovalev, Dmitriy G Ponomarenko, Sergey V Pisarenko, Nikolay A Shapakov, Anna A Khachaturova, Natalia S Serdyuk, Olga V Bobrysheva, Alexander N Kulichenko
Format: Article in Journal/Newspaper
Language:English
Published: Wolters Kluwer Medknow Publications 2021
Subjects:
Online Access:https://doi.org/10.4103/1995-7645.320523
https://doaj.org/article/db9d8dc4d23a4eb99d2efe489f0f9178
Description
Summary:Objective: To study Brucella (B.) abortus strains isolated in the Russian Federation, in order to identify their detailed position in the phylogenetic structure of the species global population as well as to determine genetic relationships for isolates from different geographical areas. Methods: Based on Bayesian method, the whole genome single-nucleotide polymorphism (SNP) analysis of 258 B. abortus strains from different geographical areas of the world including 20 B. abortus strains isolated in Russia was carried out. Results: The core genome SNP analysis of the B. abortus isolates allowed describing the main genetic lineages. The Russian strains entered two separate clades, including the basal branch and the C1 branch that is widely spread in Eurasia. The data on the isolation time was used for the dating of phylogenetic tree, and also the estimated time frame for the B. abortus genotype diversification was determined. There were sets of specific SNPs identified, which defined each of the genotypes and sub-genotypes. Conclusions: A significant genetic diversity of the brucellosis pathogen strains from Russia has been proven. The sets of unique specific SNPs described in our study may become one of the elements within a bio-informational analysis algorithm to be used for epidemiological study of brucellosis outbreaks, including those caused by new (atypical) genetic variants of B. abortus.