Estimating spatio-temporal distributions of mosquito breeding pools in irrigated agricultural schemes: a case study at the Bwanje Valley Irrigation Scheme

Abstract Background The association between irrigation and the proliferation of adult mosquitoes including malaria vectors is well known; however, irrigation schemes are treated as homogenous spatio-temporal units, with little consideration for how larval breeding varies across space and time. The o...

Full description

Bibliographic Details
Published in:Malaria Journal
Main Authors: April N. Frake, Willy Namaona, Edward D. Walker, Joseph P. Messina
Format: Article in Journal/Newspaper
Language:English
Published: BMC 2020
Subjects:
Online Access:https://doi.org/10.1186/s12936-020-3113-3
https://doaj.org/article/da22892a882949dbba009d7f7421353c
Description
Summary:Abstract Background The association between irrigation and the proliferation of adult mosquitoes including malaria vectors is well known; however, irrigation schemes are treated as homogenous spatio-temporal units, with little consideration for how larval breeding varies across space and time. The objective of this study was to estimate the spatio-temporal distribution of pools of water facilitating breeding at the Bwanje Valley Irrigation Scheme (BVIS) in Malawi, Africa as a function of environmental and anthropogenic characteristics. Methods Irrigation structure and land cover were quantified during the dry and rainy seasons of 2016 and 2017, respectively. These data were combined with soil type, irrigation scheduling, drainage, and maintenance to model suitability for mosquito breeding across the landscape under three scenarios: rainy season, dry season with limited water resources, and a dry season with abundant water resources. Results Results demonstrate seasonal, asymmetrical breeding potential and areas of maximum breeding potential as a function of environmental characteristics and anthropogenic influence in each scenario. The highest percentage of suitable area for breeding occurs during the rainy season; however, findings show that it is not merely the amount of water in an irrigated landscape, but the management of water resources that determines the aggregation of water bodies. In each scenario, timing and direction of irrigation along with inefficient drainage render the westernmost portion of BVIS the area of highest breeding opportunity, which expands and contracts seasonally in response to water resource availability and management decisions. Conclusions Changes in the geography of breeding potential across irrigated spaces can have profound effects on the distribution of malaria risk for those living in close proximity to irrigated agricultural schemes. The methods presented are generalizable across geographies for estimating spatio-temporal distributions of breeding risk for mosquitoes in ...