Arctic Thin Ice Detection Using AMSR2 and FY-3C MWRI Radiometer Data

Thin ice with a thickness of less than half a meter produces strong salt and heat fluxes which affect deep water circulation and weather in the polar oceans. The identification of thin ice areas is essential for ship navigation. We have developed thin ice detection algorithms for the AMSR2 and FY-3C...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Marko Mäkynen, Markku Similä
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2024
Subjects:
Q
Online Access:https://doi.org/10.3390/rs16091600
https://doaj.org/article/d84fae2be79545999cc9553e2f5399c9
Description
Summary:Thin ice with a thickness of less than half a meter produces strong salt and heat fluxes which affect deep water circulation and weather in the polar oceans. The identification of thin ice areas is essential for ship navigation. We have developed thin ice detection algorithms for the AMSR2 and FY-3C MWRI radiometer data over the Arctic Ocean. Thin ice (<20 cm) is detected based on the classification of the H-polarization 89–36-GHz gradient ratio (GR8936H) and the 36-GHz polarization ratio (PR36) signatures with a linear discriminant analysis (LDA) and thick ice restoration with GR3610H. The brightness temperature ( <semantics> T B </semantics> ) data are corrected for the atmospheric effects following an EUMETSAT OSI SAF correction method in sea ice concentration retrieval algorithms. The thin ice detection algorithms were trained and validated using MODIS ice thickness charts covering the Barents and Kara Seas. Thin ice detection is applied to swath <semantics> T B </semantics> datasets and the swath charts are compiled into a daily thin ice chart using 10 km pixel size for AMSR2 and 20 km for MWRI. On average, the likelihood of misclassifying thick ice as thin in the ATIDA2 daily charts is 7.0% and 42% for reverse misclassification. For the MWRI chart, these accuracy figures are 4% and 53%. A comparison of the MWRI chart to the AMSR2 chart showed a very high match (98%) for the thick ice class with SIC > 90% but only a 53% match for the thin ice class. These accuracy disagreements are due to the much coarser resolution of MWRI, which gives larger spatial averaging of <semantics> T B </semantics> signatures, and thus, less detection of thin ice. The comparison of the AMSR2 and MWRI charts with the SMOS sea ice thickness chart showed a rough match in the thin ice versus thick ice classification. The AMSR2 and MWRI daily thin ice charts aim to complement SAR data for various sea ice classification tasks.