Biochemical diversity in the Trypanosoma congolense trans-sialidase family.

Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active tra...

Full description

Bibliographic Details
Published in:PLoS Neglected Tropical Diseases
Main Authors: Thaddeus T Gbem, Mario Waespy, Bettina Hesse, Frank Dietz, Joel Smith, Gloria D Chechet, Jonathan A Nok, Sørge Kelm
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2013
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0002549
https://doaj.org/article/d82a03f96b5d4150b42c0eeff23a4e8a
Description
Summary:Trans-sialidases are key enzymes in the life cycle of African trypanosomes in both, mammalian host and insect vector and have been associated with the disease trypanosomiasis, namely sleeping sickness and nagana. Besides the previously reported TconTS1, we have identified three additional active trans-sialidases, TconTS2, TconTS3 and TconTS4, and three trans-sialidase like genes in Trypanosoma congolense. At least TconTS1, TconTS2 and TconTS4 are found in the bloodstream of infected animals. We have characterised the enzymatic properties of recombinant proteins expressed in eukaryotic fibroblasts using fetuin as model blood glycoprotein donor substrate. One of the recombinant trans-sialidases, TconTS2, had the highest specific activity reported thus far with very low sialidase activity. The active trans-sialidases share all the amino acids critical for the catalytic reaction with few variations in the predicted binding site for the leaving or acceptor glycan. However, these differences cannot explain the orders of magnitudes between their transfer activities, which must be due to other unidentified structural features of the proteins or substrates selectivity. Interestingly, the phylogenetic relationships between the lectin domains correlate with their specific trans-sialylation activities. This raises the question whether and how the lectin domains regulate the trans-sialidase reaction. The identification and enzymatic characterisation of the trans-sialidase family in T. congolense will contribute significantly towards the understanding of the roles of these enzymes in the pathogenesis of Animal African Trypanosomiasis.