Global climate models’ bias in surface temperature trends and variability

The Earth has warmed in the last century with the most rapid warming occurring near the surface in the Arctic. This Arctic amplification occurs partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The amoun...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Richard Davy, Igor Esau
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing 2014
Subjects:
Q
Online Access:https://doi.org/10.1088/1748-9326/9/11/114024
https://doaj.org/article/d42b2f52782944b9b098b6526784b9b9
Description
Summary:The Earth has warmed in the last century with the most rapid warming occurring near the surface in the Arctic. This Arctic amplification occurs partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The amount of warming depends upon the extent of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). Global climate models (GCMs) tend to over-estimate the depth of stably-stratified ABLs, and here we show that GCM biases in the ABL depth are strongly correlated with biases in the surface temperature variability. This highlights the need for a better description of the stably-stratified ABL in GCMs in order to constrain the current uncertainty in climate variability and projections of climate change in the surface layer.