Vertical transmission of the entomopathogenic soil fungus Scopulariopsis brevicaulis as a contaminant of eggs in the winter tick, Dermacentor albipictus, collected from calf moose (New Hampshire, USA)

Moose naturally acquire soil fungi on their fur that are entomopathogenic to the winter tick, Dermacentor albipictus. Presumed to provide a measure of on-host tick control, it is unknown whether these soil fungi impact subsequent off-host stages of the tick. Eggs and resultant larvae originating fro...

Full description

Bibliographic Details
Published in:Mycology
Main Authors: Jay A. Yoder, Benjamin M. Rodell, Lucas A. Klever, Cameron J. Dobrotka, Peter J. Pekins
Format: Article in Journal/Newspaper
Language:English
Published: Taylor & Francis Group 2019
Subjects:
Online Access:https://doi.org/10.1080/21501203.2019.1600062
https://doaj.org/article/d298a323f34f4280bff13d8fe9368c07
Description
Summary:Moose naturally acquire soil fungi on their fur that are entomopathogenic to the winter tick, Dermacentor albipictus. Presumed to provide a measure of on-host tick control, it is unknown whether these soil fungi impact subsequent off-host stages of the tick. Eggs and resultant larvae originating from engorged, adult female winter ticks collected from dead calf moose (Alces alces) were used to investigate the presence and extent of fungal infection. Approximately 40% of eggs and larvae were infected, almost exclusively by the fungus Scopulariopsis brevicaulis (teleomorph Microascus brevicaulis: Microascaceae, Ascomycota). Eggs analysed on the day of oviposition and day of hatching had high frequency (40%) of S. brevicaulis, whereas the frequency in eggs harvested in utero was minimal (7%); therefore, exposure occurs pre-oviposition in the female’s genital chamber, not by transovarial transmission. At hatching, larvae emerge containing S. brevicaulis indicating transstadial transmission. Artificial infection by topical application of eggs and larvae with a large inoculum of S. brevicaulis spores caused rapid dehydration, marked mortality; pathogenicity was confirmed by Koch’s postulates. The high hatching success (>90%) and multi-month survival of larvae imply that S. brevicaulis is maintained as a natural pathobiont in winter ticks.