Mid-level convection in a warm conveyor belt accelerates the jet stream

Jet streams and potential vorticity (PV) gradients along upper-level ridges, troughs and zonal flows form a waveguide that governs midlatitude dynamics. Warm conveyor belt (WCB) outflows often inject low-PV air into ridges, and the representation of WCBs is seen as a source of uncertainty for downst...

Full description

Bibliographic Details
Published in:Weather and Climate Dynamics
Main Authors: N. Blanchard, F. Pantillon, J.-P. Chaboureau, J. Delanoë
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
Online Access:https://doi.org/10.5194/wcd-2-37-2021
https://doaj.org/article/d2235ff934464f0a8ba05b4191e9cb06
Description
Summary:Jet streams and potential vorticity (PV) gradients along upper-level ridges, troughs and zonal flows form a waveguide that governs midlatitude dynamics. Warm conveyor belt (WCB) outflows often inject low-PV air into ridges, and the representation of WCBs is seen as a source of uncertainty for downstream forecasts. Recent studies have highlighted the presence of mesoscale structures with negative PV in WCBs, the impact of which, on large-scale dynamics, is still debated. Here, fine-scale observations of cloud and wind structures acquired with airborne Doppler radar and dropsondes provide rare information on the WCB outflow of the Stalactite cyclone and the associated upper-level ridge on 2 October 2016 during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). The observations show a complex tropopause structure associated with two jet stream cores along the northwestern edge of the ridge. A reference convection-permitting simulation with full physics reproduces the observed structures and reveals the presence of elongated negative PV bands along the eastern jet stream core. In contrast, a sensitivity experiment with heat exchanges due to cloud processes being cut off shows lower cloud tops, weaker jet stream cores, a ridge less extended westward and the absence of negative PV bands. A Lagrangian analysis based on online trajectories shows that the anticyclonic branch of the WCB outflow enters the eastern jet stream core in the reference simulation, while it is absent in the sensitivity experiment. The anticyclonic ascents and negative PV bands originate from the same region near the cyclone's bent-back front. The most rapid ascents coincide with mid-level convective cells identified by clustering analysis, which are located in a region of conditional instability below the jet stream core and above a low-level jet. Horizontal PV dipoles are found around these cells, with the negative poles reaching absolute negative values, and the convective cells thus appear as the source of the negative PV ...