Rare bird forecast: A combined approach using a long‐term dataset of an Arctic seabird and a numerical weather prediction model

Abstract Wildlife observation is a popular activity, and sightings of rare or difficult‐to‐find animals are often highly desired. However, predicting the sighting probabilities of these animals is a challenge for many observers, and it may only be possible by limited experts with intimate knowledge...

Full description

Bibliographic Details
Published in:Ecology and Evolution
Main Authors: Masayuki Senzaki, Kenta Tamura, Yoshiaki Watanabe, Megumi Watanabe, Tomonori Sato
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2024
Subjects:
Online Access:https://doi.org/10.1002/ece3.11388
https://doaj.org/article/d203017182e84c2d85b1661ed7476f60
Description
Summary:Abstract Wildlife observation is a popular activity, and sightings of rare or difficult‐to‐find animals are often highly desired. However, predicting the sighting probabilities of these animals is a challenge for many observers, and it may only be possible by limited experts with intimate knowledge and skills. To tackle this difficulty, we developed user‐friendly forecast systems of the daily observation probabilities of a rare Arctic seabird (Ross's Gull Rhodostethia rosea) in a coastal area in northern Japan. Using a dataset gathered during 16 successive winters, we applied a machine learning technique of self‐organizing maps and explored how days with gull sightings were related to the meteorological pressure patterns over the Sea of Okhotsk (Method A). We also built a regression model that explains the relationship between gull sightings and local‐scale environmental factors (Method B). We then applied these methods with the operational global numerical weather prediction model (a computer simulation application about the fluid dynamics of Earth's atmosphere) to forecast the daily observation probabilities of our target. Method A demonstrated a strong dependence of gull sightings on the 16 representative weather patterns and forecasted stepwise observation probabilities ranging from 0% to 85.7%. Method B also showed that the strength of the northerly wind and the advancement of the season explained gull sightings and forecasted continuous observation probabilities ranging from 0% to 95.5%. Applying these two methods with the operational global numerical weather prediction model successfully forecasted the varied observation probabilities of Ross's Gull from 1 to 5 days ahead from November to February. A 2‐year follow‐up observation also validated both forecast systems to be effective for successful observation, especially when both systems forecasted higher observation probabilities. The developed forecast systems would therefore allow cost‐effective animal observation and may facilitate a better experience ...