The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment

While advanced computational capabilities have enabled the development of complex ocean general circulation models (OGCMs) for marginal seas, systematic comparisons of regional ocean models and their setups are still rare. The Baltic Sea Model Intercomparison Project (BMIP), introduced herein, was t...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: M. Gröger, M. Placke, H. E. M. Meier, F. Börgel, S.-E. Brunnabend, C. Dutheil, U. Gräwe, M. Hieronymus, T. Neumann, H. Radtke, S. Schimanke, J. Su, G. Väli
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/gmd-15-8613-2022
https://doaj.org/article/d03c33cdb46a4906aeebeecc4277e4c0
Description
Summary:While advanced computational capabilities have enabled the development of complex ocean general circulation models (OGCMs) for marginal seas, systematic comparisons of regional ocean models and their setups are still rare. The Baltic Sea Model Intercomparison Project (BMIP), introduced herein, was therefore established as a platform for the scientific analysis and systematic comparison of Baltic Sea models. The inclusion of a physically consistent regional reanalysis data set for the period 1961–2018 allows for standardized meteorological forcing and river runoff. Protocols to harmonize model outputs and analyses are provided as well. An analysis of six simulations performed with four regional OGCMs differing in their resolution, grid coordinates, and numerical methods was carried out to explore intermodel differences despite harmonized forcing. Uncertainties in the modeled surface temperatures were shown to be larger at extreme than at moderate temperatures. In addition, a roughly linear increase in the temperature spread with increasing water depth was determined and indicated larger uncertainties in the near-bottom layer. On the seasonal scale, the model spread was larger in summer than in winter, likely due to differences in the models' thermocline dynamics. In winter, stronger air–sea heat fluxes and vigorous convective and wind mixing reduced the intermodel spread. Uncertainties were likewise reduced near the coasts, where the impact of meteorological forcing was stronger. The uncertainties were highest in the Bothnian Sea and Bothnian Bay, attributable to the differences between the models in the seasonal cycles of sea ice triggered by the ice–albedo feedback. However, despite the large spreads in the mean climatologies, high interannual correlations between the sea surface temperatures (SSTs) of all models and data derived from a satellite product were determined. The exceptions were the Bothnian Sea and Bothnian Bay, where the correlation dropped significantly, likely related to the effect of sea ice on ...