Using species-area relationships to inform baseline conservation targets for the deep North East Atlantic.

Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implem...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Nicola L Foster, Andrew Foggo, Kerry L Howell
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2013
Subjects:
R
Q
Online Access:https://doi.org/10.1371/journal.pone.0058941
https://doaj.org/article/c4502c75a1ea47168d130fbc9c9e4e7a
Description
Summary:Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200-1100 m and 1100-1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic's deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200-1100 m and 1100-1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic.