Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations

Anthropogenic CO 2 emissions cause irreversible climate change on centennial to millennial timescales, yet current mitigation efforts are insufficient to limit global warming to a level that is considered safe. Carbon dioxide removal (CDR) has been suggested as an option to partially reverse climate...

Full description

Bibliographic Details
Published in:Earth System Dynamics
Main Authors: J. Schwinger, A. Asaadi, N. J. Steinert, H. Lee
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Q
Online Access:https://doi.org/10.5194/esd-13-1641-2022
https://doaj.org/article/c3dfda5ff4ec4e77a293b7b4bd59fff8
Description
Summary:Anthropogenic CO 2 emissions cause irreversible climate change on centennial to millennial timescales, yet current mitigation efforts are insufficient to limit global warming to a level that is considered safe. Carbon dioxide removal (CDR) has been suggested as an option to partially reverse climate change and to return the Earth system to a less dangerous state after a period of temperature overshoot. Whether or to what extent such partial reversal of climate change under CDR would happen is, next to socio-economic feasibility and sustainability, key to assessing CDR as a mitigation option. Here, we use a state-of-the-art Earth system model that includes a representation of permafrost carbon to investigate the reversibility of the Earth system after overshoots of different durations and magnitudes in idealized simulations. We find that atmospheric CO 2 concentrations are slightly lower after an overshoot, compared to a reference simulation without overshoot, due to a near-perfect compensation of carbon losses from land by increased ocean carbon uptake during the overshoot periods. The legacy of an overshoot is, on a centennial timescale, indiscernible (within natural variability) from a reference case without overshoot for many aspects of the Earth system including global average surface temperature, marine and terrestrial productivity, strength of the Atlantic meridional overturning circulation, surface ocean pH, surface O 2 concentration, and permafrost extent, except in the most extreme overshoot scenario considered in this study. Consistent with previous studies, we find irreversibility in permafrost carbon and deep ocean properties like seawater temperature, pH, and O 2 concentrations. We do not find any indication of tipping points or self-reinforcing feedbacks that would put the Earth system on a significantly different trajectory after an overshoot. Hence, the effectiveness of CDR in partially reversing large-scale patterns of climate change might not be the main issue of CDR but rather the impacts and ...