PyTrx: A Python-Based Monoscopic Terrestrial Photogrammetry Toolset for Glaciology

Terrestrial time-lapse photogrammetry is a rapidly growing method for deriving measurements from glacial environments because it provides high spatio-temporal resolution records of change. Currently, however, the potential usefulness of time-lapse data is limited by the unavailability of user-friend...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Penelope How, Nicholas R. J. Hulton, Lynne Buie, Douglas I. Benn
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media S.A. 2020
Subjects:
Q
Online Access:https://doi.org/10.3389/feart.2020.00021
https://doaj.org/article/c3a7398b11514b508baf0aec0dc97177
Description
Summary:Terrestrial time-lapse photogrammetry is a rapidly growing method for deriving measurements from glacial environments because it provides high spatio-temporal resolution records of change. Currently, however, the potential usefulness of time-lapse data is limited by the unavailability of user-friendly photogrammetry toolsets. Such data are used primarily to calculate ice flow velocities or to serve as qualitative records. PyTrx (available at https://github.com/PennyHow/PyTrx) is presented here as a Python-alternative toolset to widen the range of monoscopic photogrammetry (i.e., from a single viewpoint) toolsets on offer to the glaciology community. The toolset holds core photogrammetric functions for template generation, feature-tracking, camea calibration and optimization, image registration, and georectification (using a planar projective transformation model). In addition, PyTrx facilitates areal and line measurements, which can be detected from imagery using either an automated or manual approach. Examples of PyTrx's applications are demonstrated using time-lapse imagery from Kronebreen and Tunabreen, two tidewater glaciers in Svalbard. Products from these applications include ice flow velocities, surface areas of supraglacial lakes and meltwater plumes, and glacier terminus profiles.