High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores

Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at...

Full description

Bibliographic Details
Published in:Earth System Science Data
Main Authors: T. Erhardt, M. Bigler, U. Federer, G. Gfeller, D. Leuenberger, O. Stowasser, R. Röthlisberger, S. Schüpbach, U. Ruth, B. Twarloh, A. Wegner, K. Goto-Azuma, T. Kuramoto, H. A. Kjær, P. T. Vallelonga, M.-L. Siggaard-Andersen, M. E. Hansson, A. K. Benton, L. G. Fleet, R. Mulvaney, E. R. Thomas, N. Abram, T. F. Stocker, H. Fischer
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
Online Access:https://doi.org/10.5194/essd-14-1215-2022
https://doaj.org/article/c1753d31a5c2413181b3cbcb9d0087b5
Description
Summary:Records of chemical impurities from ice cores enable us to reconstruct the past deposition of aerosols onto polar ice sheets and alpine glaciers. Through this they allow us to gain insight into changes of the source, transport and deposition processes that ultimately determine the deposition flux at the coring location. However, the low concentrations of the aerosol species in the ice and the resulting high risk of contamination pose a formidable analytical challenge, especially if long, continuous and highly resolved records are needed. Continuous flow analysis, CFA, the continuous melting, decontamination and analysis of ice-core samples has mostly overcome this issue and has quickly become the de facto standard to obtain high-resolution aerosol records from ice cores after its inception at the University of Bern in the mid-1990s. Here, we present continuous records of calcium ( Ca 2+ ), sodium ( Na + ), ammonium ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="f83a9f1907f38a5589c34b239e10518b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-1215-2022-ie00001.svg" width="24pt" height="15pt" src="essd-14-1215-2022-ie00001.png"/></svg:svg> ), nitrate ( <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math> <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" ...