Response of lacustrine glacier dynamics to atmospheric forcing in the Cordillera Darwin

Calving glaciers respond quickly to atmospheric variability through ice dynamic adjustment. Particularly, single weather extremes may cause changes in ice-flow velocity and terminus position. Occasionally, this can lead to substantial event-driven mass loss at the ice front. We examine changes in te...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Lukas Langhamer, Tobias Sauter, Franziska Temme, Niklas Werner, Florian Heinze, Jorge Arigony-Neto, Inti Gonzalez, Ricardo Jaña, Christoph Schneider
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press
Subjects:
Online Access:https://doi.org/10.1017/jog.2024.14
https://doaj.org/article/c1708faac9e44acab6c139d183a62707
Description
Summary:Calving glaciers respond quickly to atmospheric variability through ice dynamic adjustment. Particularly, single weather extremes may cause changes in ice-flow velocity and terminus position. Occasionally, this can lead to substantial event-driven mass loss at the ice front. We examine changes in terminus position, ice-flow velocity, and calving flux at the grounded lacustrine Schiaparelli Glacier in the Cordillera Darwin using geo-referenced time-lapse camera images and remote sensing data (Sentinel-1) from 2015 to 2022. Lake-level records, lake discharge measurements, and a coupled energy and mass balance model provide insight into the subglacial water discharge. We use downscaled reanalysis data (ERA5) to identify climate extremes and track land-falling atmospheric rivers to investigate the ice-dynamic response on possible atmospheric drivers.