Investigation of Polar Mesospheric Summer Echoes Using Linear Discriminant Analysis

Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to the formation process, which at present is not...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Dorota Jozwicki, Puneet Sharma, Ingrid Mann
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2021
Subjects:
Q
Online Access:https://doi.org/10.3390/rs13030522
https://doaj.org/article/beaeb1d441f7417ab1776534ffa5f8d9
Description
Summary:Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to the formation process, which at present is not yet fully understood. Image analysis of PMSE data can help carry out systematic studies to characterize PMSE during different ionospheric and atmospheric conditions. In this paper, we analyze PMSE observations recorded using the European Incoherent SCATter (EISCAT) Very High Frequency (VHF) radar. The collected data comprises of 18 observations from different days. In our analysis, the image data is divided into regions of a fixed size and grouped into three categories: PMSE, ionosphere, and noise. We use statistical features from the image regions and employ Linear Discriminant Analysis (LDA) for classification. Our results suggest that PMSE regions can be distinguished from ionosphere and noise with around 98 percent accuracy.