Artificial intelligence in differentiating tropical infections: A step ahead.

Background and objective Differentiating tropical infections are difficult due to its homogenous nature of clinical and laboratorial presentations among them. Sophisticated differential tests and prediction tools are better ways to tackle this issue. Here, we aimed to develop a clinician assisted de...

Full description

Bibliographic Details
Published in:PLOS Neglected Tropical Diseases
Main Authors: Shreelaxmi Shenoy, Asha K Rajan, Muhammed Rashid, Viji Pulikkel Chandran, Pooja Gopal Poojari, Vijayanarayana Kunhikatta, Dinesh Acharya, Sreedharan Nair, Muralidhar Varma, Girish Thunga
Format: Article in Journal/Newspaper
Language:English
Published: Public Library of Science (PLoS) 2022
Subjects:
Online Access:https://doi.org/10.1371/journal.pntd.0010455
https://doaj.org/article/be17f0a9cfe042c0b46b3da537d40c52
Description
Summary:Background and objective Differentiating tropical infections are difficult due to its homogenous nature of clinical and laboratorial presentations among them. Sophisticated differential tests and prediction tools are better ways to tackle this issue. Here, we aimed to develop a clinician assisted decision making tool to differentiate the common tropical infections. Methodology A cross sectional study through 9 item self-administered questionnaire were performed to understand the need of developing a decision making tool and its parameters. The most significant differential parameters among the identified infections were measured through a retrospective study and decision tree was developed. Based on the parameters identified, a multinomial logistic regression model and a machine learning model were developed which could better differentiate the infection. Results A total of 40 physicians involved in the management of tropical infections were included for need analysis. Dengue, malaria, leptospirosis and scrub typhus were the common tropical infections in our settings. Sodium, total bilirubin, albumin, lymphocytes and platelets were the laboratory parameters; and abdominal pain, arthralgia, myalgia and urine output were the clinical presentation identified as better predictors. In multinomial logistic regression analysis with dengue as a reference revealed a predictability of 60.7%, 62.5% and 66% for dengue, malaria and leptospirosis, respectively, whereas, scrub typhus showed only 38% of predictability. The multi classification machine learning model observed to have an overall predictability of 55-60%, whereas a binary classification machine learning algorithms showed an average of 79-84% for one vs other and 69-88% for one vs one disease category. Conclusion This is a first of its kind study where both statistical and machine learning approaches were explored simultaneously for differentiating tropical infections. Machine learning techniques in healthcare sectors will aid in early detection and better patient ...