Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean

The planktonic and biogeochemical dynamics of the Arctic shelves exhibit a strong variability in response to Arctic warming. In this study, we employ a biogeochemical model coupled to a pan-Arctic ocean–sea ice model (MITgcm) to elucidate the processes regulating the primary production (PP) of phyto...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: V. Le Fouest, M. Manizza, B. Tremblay, M. Babin
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2015
Subjects:
Online Access:https://doi.org/10.5194/bg-12-3385-2015
https://doaj.org/article/bb3af1459aa94119bff4f01456cc5b53
Description
Summary:The planktonic and biogeochemical dynamics of the Arctic shelves exhibit a strong variability in response to Arctic warming. In this study, we employ a biogeochemical model coupled to a pan-Arctic ocean–sea ice model (MITgcm) to elucidate the processes regulating the primary production (PP) of phytoplankton, bacterioplankton (BP), and their interactions. The model explicitly simulates and quantifies the contribution of usable dissolved organic nitrogen (DON) drained by the major circum-Arctic rivers to PP and BP in a scenario of melting sea ice (1998–2011). Model simulations suggest that, on average between 1998 and 2011, the removal of usable riverine dissolved organic nitrogen (RDON) by bacterioplankton is responsible for a ~ 26% increase in the annual BP for the whole Arctic Ocean. With respect to total PP, the model simulates an increase of ~ 8% on an annual basis and of ~ 18% in summer. Recycled ammonium is responsible for the PP increase. The recycling of RDON by bacterioplankton promotes higher BP and PP, but there is no significant temporal trend in the BP : PP ratio within the ice-free shelves over the 1998–2011 period. This suggests no significant evolution in the balance between autotrophy and heterotrophy in the last decade, with a constant annual flux of RDON into the coastal ocean, although changes in RDON supply and further reduction in sea-ice cover could potentially alter this delicate balance.