Enhanced mosquitocidal efficacy of pyrethroid insecticides by nanometric emulsion preparation towards Culex pipiens larvae with biochemical and molecular docking studies

Abstract Background The growing threat of vector-borne diseases and environmental pollution with conventional pesticides has led to the search for nanotechnology applications to prepare alternative products. Methods In the current study, four pyrethroid insecticides include alpha-cypermethrin, delta...

Full description

Bibliographic Details
Published in:Journal of the Egyptian Public Health Association
Main Authors: Nehad E. M. Taktak, Mohamed E. I. Badawy, Osama M. Awad, Nadia E. Abou El-Ela, Salwa M. Abdallah
Format: Article in Journal/Newspaper
Language:English
Published: SpringerOpen 2021
Subjects:
Online Access:https://doi.org/10.1186/s42506-021-00082-1
https://doaj.org/article/bad5b13d9c7a4355971d6c663c3fcbe5
Description
Summary:Abstract Background The growing threat of vector-borne diseases and environmental pollution with conventional pesticides has led to the search for nanotechnology applications to prepare alternative products. Methods In the current study, four pyrethroid insecticides include alpha-cypermethrin, deltamethrin, lambda-cyhalothrin, and permethrin were incorporated into stable nanoemulsions. The optimization of nanoemulsions is designed based on the active ingredient, solvent, surfactant, sonication time, sonication cycle, and sonication energy by factorial analysis. The nanoscale emulsions’ droplet size and morphology were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The toxicity of nanoemulsions against Culex pipiens larvae was evaluated and compared with the technical and commercial formulations. The in vitro assay of adenosine triphosphatase (ATPase), carboxylesterase (CaE), and glutathione-S-transferase (GST) were also investigated. Furthermore, molecular docking was examined to assess the binding interactions between the tested pyrethroids and the target enzymes. Also, an ecotoxicological assessment of potential effects of the tested products on the freshwater alga Raphidocelis subcapitata was determined according to OECD and EPA methods. The emulsifible concentration (EC50) and NOEC (no observed effect concentration) values were estimated for each insecticide and graded according to the GHS to determine the risk profile in aquatic life. Results The mean droplet diameter and zeta potential of the prepared pyrethroid nanoemulsions were found to be in the range of 72.00–172.00 nm and − 0.539 to − 15.40 mV, respectively. All insecticides’ nanoemulsions showed significantly high toxicity (1.5–2-fold) against C. pipiens larvae compared to the technical and EC. The biochemical activity data proved that all products significantly inhibited ATPase. However, GST and CaE were significantly activated. Docking results proved that the pyrethroids exhibited a higher ...